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Abstract

We observed shape recovery of a deformed droplet in an immiscible polymer matrix under large step strains using stereo microscopes from
two directions. On application of a large step strain, a soft spherical droplet in a matrix with higher viscosity deformed to a flat ellipsoid. The
stretch ratio of major axis of the flat ellipsoid was 5/4 times larger than that predicted from the affine deformation. The flat ellipsoid changed
into a rod-like shape and then to a dumbbell, to an ellipsoid of revolution, and finally back to the sphere. The orientation angle between the
major axis and shear direction did not change during the course of this shape recovery and was independent of the initial radius of the droplet.
The time needed for the whole shape recovery got longer as the initial radius and the strain were increased. For a given step strain, the
normalized interfacial area plotted against the stretch ratio fell onto a master curve irrespective of the initial radius of the undeformed droplet.
It is shown that the deformed droplet reforms to the sphere after it passes through various shapes by reducing the interfacial area.q 2000
Elsevier Science Ltd. All rights reserved.
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1. Introduction

A considerable number of studies [1–10] have been
carried out on rheology and structures of immiscible poly-
mer blends to describe the rheological properties in terms of
the interface related quantities. Scholts et al. [3] found that a
recovery time for a droplet deformation evaluated from
microscopy was close to the viscoelastic terminal relaxation
time of blends after cessation of steady shear flow. Palierne
[4,5] proposed the emulsion model, which predicts the
linear viscoelastic behavior of blends. In this model, defor-
mation of droplets by an applied shear field and recovery
due to the interfacial tension lead to the terminal relaxation.
Good applicability [6–10] of the Palierne model has been
found in many blends, especially in blends comprising
dispersed droplet phases.

In terms of dynamic interfacial properties, the interfacial
tension is one of the essential factors for understanding
mechanical properties and the morphology of polymeric
blends. If a droplet is highly extended under a certain flow
field or a fiber is embedded in a matrix of another polymer,

the capillary instability results in sinusoidal distortions in
the interface of a liquid cylinder. Following the well-known
experiments and analyses by Rayleigh [11] and Tomotika
[12] on viscous materials, studies [13–20] related to the
interfacial properties of viscoelastic polymeric materials
have been carried out. Elemans et al. [13] proposed a
method to measure the interfacial tension for immiscible
polymer blends, known as the breaking thread method,
based on the Tomotika’s analysis. In conventional methods,
such as the pendant drop method, it is difficult to determine
whether the equilibrium is attained, since this method relies
on the balance between gravitational force and the interfa-
cial tension. Cohen and Carriere [15–17] introduced a novel
method, known as the imbedded fiber retraction method, in
which the interfacial tension is evaluated from changes in the
shape of a short fiber of one polymer embedded in another
polymer into a final spherical shape. Moreover, according to
other recent papers [18–20], the interfacial tension between
the coexisting phases in polymer blends can also be esti-
mated from the droplet shape under shear flow and recovery
of the droplet shape after the cessation of shear flow.
However, it is still unclear how the interfacial tension and
the droplet/matrix viscoelasticity correlate with the shape
recovery of the droplet.
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On the other hand, since Taylor’s pioneering work,
[21,22] many studies [23–29] have been carried out to
observe the droplet deformation and shape recovery in
various flow fields. Delaby et al. [23–25] examined the
deformation of a droplet under uniaxial elongational flow
by quenching the sample. They reported that the deforma-
tion of the droplet in a polymeric matrix strongly depended
on the viscosity ratio of the droplet to the matrix. In parti-
cular, Delaby et al. found that the soft droplet in a very
viscous matrix deformed considerably more than expected
from the affine deformation. Mighri et al. [26] reported on
the contribution of the droplet/matrix elasticity to the defor-
mation of a single droplet suspended in the medium under
the uniaxial elongational flow along the central axis of a
converging conical channel made of Plexiglas. Levitt et
al. [27] developed a device, that had two counter-rotated
transparent disks to generate a simple shear flow. The
shape of the droplets, which was produced after a fiber
embedded between two disks broke-up due to the capillary
instability, was observed in the melt-state. However,
measurements of the deformed droplet under the simple
shear flow were rather qualitative because only the top
view of the droplet was observed. Moreover, the droplet
curved owing to the rotating parallel disks.

Fundamental understanding of the deformation/recovery
and breakup mechanisms of an isolated polymer droplet
under the deformation fields is essential to correlate the
droplet deformation with rheology in polymer blends. The
step-strain experiment is the simplest way to study these
deformation/recovery behaviors. In this experiment,
droplets in polymer blends deform instantaneously and the
shape recovery (or relaxation) of the droplet is traced. On
the other hand, under steady flows, the droplet shape is
observed with some recovery of the droplets depending on
the strain rate and a competition between the deformation
and the recovery of the droplets determine this shape. The
droplet shapes under the shear flows have recently been
reported by many researchers [30–36]. However, to our
best knowledge, there have been only one report [37] on
the droplet shape recovery under the step shear strain.

In our previous study [37], we observed the deformation
and shape recovery of an isolated droplet from two direc-

tions, i.e. side and top directions, after the application of
large step shear strains. The effect of the applied strain on
the shape recovery was examined. Therefore, the total
recovery time strongly depended on the magnitude of the
applied strain. However, we have not yet examined the
effect of the droplet size on the shape recovery. Measure-
ments and evaluation of the interfacial area are also very
important to consider the mechanism of shape recovery. The
objectives of the present study are the following: direct
observation of the shape of droplets with various initial
radii for (1) accurate determination of the time dependence
of the droplet dimensions and orientation; (2) investigation
into the dependence of shape recovery time on the initial
radius; and (3) evaluation of the interfacial area during the
course of shape recovery and consideration of the recovery
mechanism.

2. Experimental

The component polymers are poly(isobutylene) (PIB
from Polysciences. Inc.) and poly(dimethyl siloxane)
(PDMS from Shin-Etsu Chemical Co., Ltd). Dynamic
mechanical measurements were carried out using the Bohlin
Rheometer CSM in a parallel-plate geometry (12.5 mm
radius, 1 mm gap). Frequency dependences of the storage
modulusG0 and the absolute value of complex viscosityuh pu
of the polymers measured at 238C are shown in our previous
paper [37]. The zero shear viscosities of PIB (hd) and
PDMS (hm) at 238C is 60 and 900 Pa s, respectively. The
viscosity ratioK�� hd=hm� is 0.067 and the elasticity ratio
K 0�� hdJed=hmJem� is 9:62× 1024

; whereJe is the steady
state compliance and subscripts d and m denote droplet
and matrix, respectively.

The apparatus used for the observation of PIB droplets in
the PDMS matrix is described elsewhere [37]. Before the
experiments, the PDMS sample was kept in vacuum oven
overnight at room temperature to eliminate air bubbles.
Then, a small amount of PIB (0.1–0.2ml) was injected
into the PDMS matrix with a microsyringe to make a PIB
droplet. The process of deformation and shape recovery of
the droplet in the PDMS matrix was observed at room
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Fig. 1. A set of microphotos of a poly(isobutylene) droplet�hd � 60 Pa s; r0 � 160mm� in a poly(dimethyl siloxane)�hm � 900 Pa s� during the shape
recovery after the application of a large step straing � 5: The top and side views are shown.



temperature from top and side by using two stereo-micro-
scopes equipped with photographic and/or CCD cameras.

3. Results and discussion

3.1. Observation of time change of the deformed droplet

The droplet with the initial radiusr0, in the range of 140–
280mm, were subjected to the step strainsg (#5). The
droplets with r0 � 160 and 280mm were examined only
for g � 5: In the previous paper [37], we reported that the
shapes of the PIB droplet�r0 � 230mm� during the course
of the shape recovery strongly depended ong .

Fig. 1 shows a series of photographs of the droplet with
r0 � 160mm at g � 5 taken at various stages of shape
recovery. The photographs were taken from top and side
of the apparatus. Immediately after the deformation, the
droplet shape is a flat ellipsoid. This deformed droplet
gradually changes into a rod-like shape. After the recovery
from the flat ellipsoid to the rod-like shape, the droplet
becomes symmetrical around the major axis. The increase
in the diameter is more prominent at the droplet ends than at
the center, resulting in a dumbbell shape (having bulbs at the

ends). Finally, the droplet changes into an ellipsoid of revo-
lution and back to the sphere with its original radius,r0.

Fig. 2 shows detailed changes from the dumbbell shape to
the ellipsoid of revolution in the case ofr0 � 230mm atg �
5: The dumbbell does not break up at the center and soon
becomes the ellipsoid of revolution, although the bulb
diameter increases with time.

We have also observed the breakup of the droplet with
r0 � 170mm: The magnitude of the attainable strain with-
out breakup is seven for the droplet. At the magnitude of the
applied straing � 8; the droplet first changes into a long
rod-like shape, and then the droplet breaks up into some
smaller droplets due to the capillary instabilities [11,12]
appearing on the cylindrical interface. The length of the
droplet decreases somewhat during this process. Stone and
Leal [38] examined the mechanism of the recovery and
breakup of a long extended droplet suspended in other
matrix by the numerical simulations. They demonstrated
that the dynamical evolution of the droplet shape depends
on the viscosity ratio and the initial droplet shape, in case
that both ends have the bulbous or pointed shape. Tjahjadi et
al. [39] investigated the droplet breakup using the results of
simulations by Stone and Leal [38] and showed that the
experimental results examined in Couette flow are in agree-
ment with the simulations. Our results of the time evolution
of the droplet breakup are similar to those of Tjahjadi et al.
This may be due to the coincidence of the viscosity ratio
K � 0:067 in both systems.

3.2. Measurement of size and orientation of the deformed
droplet

Dimensions of the deformed droplet are defined in Fig. 3.
The dimensions along the major and two minor axes are
denoted asa, b and c and an orientation angle is defined
asu . In case of the dumbbell,b andc are taken as the radius
of the central part. Fig. 4 summarizes the time dependence
of u for the deformed droplets with variousr0 after the
application of the step straing (as indicated in Fig. 4).
Since the rotational relaxation time of the droplets (with
r0 $ 140mm) in the viscous PDMS matrix�hm �
900 Pa s� is extremely long (estimated to be,1013 s) [37],
u stays almost constant during the shape recovery. In Fig. 4,
the horizontal dashed lines indicate the orientation angleua

of the strain ellipsoid

ua � 1
2 cot21 g

2

� �
; �1�

which is equal to the orientation angle for affine deforma-
tion. At g � 3 and 5,u agrees withua, althoughu atg � 1,
2 and 4 appears to be slightly larger thanua.

In Fig. 5, principal stretch ratios of the droplet,a/r0, b/r0

and c/r0, are plotted against time after the application of
strain of g � 5 for two droplets with r0 � 140 and
280mm. Just after the application of the step strain,b/r0 is
much smaller thanc/r0 (,1), and thus the droplet takes a flat
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Fig. 2. Microphotos of a poly(isobutylene) droplet�r0 � 230mm� atg � 5
in the process from the dumbbell shape to the ellipsoid of revolution. The
side view is shown.

Fig. 3. Definition of the dimensions of the deformed droplet along three
principal axes and the orientation angleu .



ellipsoidal shape. The three stretch ratios stay almost
constant for a short period of time�t , 10 s�: With time t
up to ca. 100 s,c/r0 decreases whileb/r0 increases, resulting
in a rod-like shape of the droplet havingc=r0 ù b=r0: Then,
a/r0 begins to decrease slowly and the droplet reforms to a
dumbbell. Finally, the droplet changes into an ellipsoid of
revolution, and the three stretch ratios rapidly approached
unity to recover the spherical shape. Clearly, the whole
recovery time depends on the initial radius of the droplet.

It is interesting to compare the droplet stretch ratioa/r0

(just after the application of the step strain) with the princi-
pal stretchl1 of the strain ellipsoid

l1 �
���������������������������
1 1

g2

2
1

g

2

���������
4 1 g2

qs
: �2�

Fig. 6 showsa/r0 as a function ofl1 for droplets with
various r0. The stretch ratioa/r0 is found to be 5/4 times
larger than the principal stretchl1. Similar results were
obtained in experiments under elongational flow in immis-
cible polymer blends [23,26]. Delaby et al. [23] experimen-
tally found that the droplet deformation was different from
the matrix deformation in the uniaxial elongational flow.
This difference depends on the droplet/matrix viscosity
ratio. They suggested that the deformation in the vicinity

of the droplet ends along the elongational direction was
smaller than that of the surrounding matrix, whereas the
deformation in the vicinity of droplet sides was larger.
Based on the emulsion model of Palierne, Delaby et al.
derived the following equation:

ld 2 1
l1 2 1

� 5
2K 1 3

; �3�

whereld andK area/r0 and the viscosity ratio, respectively.
When K is small, �ld 2 1�=�l1 2 1� approaches 5/3,
however, 5/4 is observed for our system. Elasticity effect
is important to consider the droplet deformation. Mighri et
al. [26] examined the contribution of elasticity to the droplet
deformation for immiscible polymer blends with weak elas-
ticity (solution sample). Although their solution samples
have the same viscosity ratio�K � 0:63� as the polymer
melt blends studied by Delaby et al. [23], the droplet defor-
mation is much smaller. The relationship between the
droplet and matrix deformation is much more complicated
than Eq. (3). Mighri et al. concluded that the droplet defor-
mation was affected not only byK but also by the elasticity
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Fig. 4. Time dependences of the orientation angleu for the droplets with
various initial radii after the application of various strains. The broken line
indicates the orientation angle for the affine deformationua at each strain.

Fig. 5. Time dependences of the three principal stretch ratios of the droplets
at g � 5:

Fig. 6. The stretch ratioa/r0 of droplets just after the application of step
strain plotted against the principal stretch of the strain ellipsoid.

Fig. 7. Semi-log plot of the droplet deformation�a 2 b�=�a 1 b� against
time obtained at various strains for the droplet withr0 � 230mm:



ratio K 0, the droplet/matrix interfacial tension and magni-
tude of shear thinning [26].

3.3. Evaluation of relaxation times

The droplet deformation is expressed by the Hencky type
strain ln(a/r0) or by the classical strain�a 2 b�=�a 1 b�: Fig.
7 shows the plots of log��a 2 b�=�a 1 b�� against time
obtained at various strains for the droplet�r0 � 230m m�:
The whole recovery of droplet deformation is not repre-
sented by a single exponentially decay process, as shown
clearly for g � 2–5: However, at the late stage of shape
recovery, log��a 2 b�=�a 1 b�� at each strain is represented
by a strain line, i.e.�a 2 b�=�a 1 b� , exp�2t=tES�: The
slopes of the straight lines are almost the same from
which we evaluate a relaxation timetES to be ca. 108 s.
This means that the droplet recovers to the spherical shape
(at the late stage) in the same dynamical way irrespective of
g . The timetES corresponds to the recovery time for the
droplet shape from the ellipsoid of revolution (E) to the
sphere (S). Semilog plots of ln(a/r0) againstt give a similar
value oftES (,105 s) [37].

In the emulsion model [4,5], a viscoelastic relaxation
time of a dispersed phase in an immiscible polymeric matrix
is associated with the deformation and shape recovery of the
droplet in linear viscoelastic region

tD � hmr0

4a
�19K 1 16��2K 1 3 2 2f�K 2 1��

10�K 1 1�2 2f�5K 1 2� �4�

Here,a andf are the interfacial tension and the volume
fraction of the dispersed phase, respectively. For a single
droplet,tD is obtained by puttingf! 0: Thea value in our
system is experimentally found to be 3.1 mN/m [40] from
the pendant drop method [41,42]. Table 1 compares the
calculatedtD with the experimental timetES for the droplets
at variousr0. The timetES shows fair agreement withtD.
We note thattES is proportional tor0 as expected from the
Palierne theory.

In Fig. 8, the stretch ratiosa/r0, b/r0 andc/r0 shown in Fig.
5 are replotted against a reduced timet/tES. The data in the
late stage (IV), representing the change from the ellipsoid of
revolution to the sphere fell almost onto a universal curve.
More interestingly, the data in the earlier stage showing the
change from the flat ellipsoid (I) to the rod-like shape (II)
can also be scaled byt/tES. This indicates that the short time

constant has the samer0 dependence astES. Let us call this
short time constant astFR. Sinceb/r0 is very small in the
earlier stage and may include considerable uncertainty, we
evaluatetFR from the plots of log�ln�c=r0�� vs. t. The eval-
uatedtFR at eachr0 is shown in Table 1.

3.4. Time constants in the stress relaxation

In the previous section,tES was found to have a similar
value to the calculatedtD. However,tD obtained from the
emulsion model corresponds to the viscoelastic relaxation
time, whiletES characterizes the shape recovery. Therefore,
it is necessary to clarify the relationship betweentESandtD.
To this end, we compare the shear stresss xy

(i) due to the
interfacial tension and some structural parameters specify-
ing the droplet deformation.

Thes xy
(i) is given by [43–45]

s �i�xy � 2
a

V

� �Z
surface

nxny dS �5�

wherenx andny are thex andy components of the unit vector
normal to the interface, andV is the volume of the system.
We consider monodisperse liquid droplets whose shape is
the ellipsoid of revolution. The droplets are dilutely
dispersed in the system and not interacting with each
other. The major and minor axes of the droplet are defined
as a� lr0 and b� l21=2r0; with l (.1) being the stretch
ratio, andr0 is the radius of a sphere having the same volume
as the droplet. If the major axis lies in thex–y plane and
orients to thex-direction with an angleu , Eq. (5) becomes

s �i�xy �
 

3af
8r0

!
sin 2u

�
"

l3 1 2
l�l3 0 2 1� 1

��
l
p �l3 2 4�
�l3 2 1� × arcsin

����������
1 2 l23
p����������

1 2 l23
p

#
:

�6�
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Table 1
Characteristic timestES andtFR for droplet shape recovery and the viscoe-
lastic relaxation timetD from the emulsion model by Palierne

tFR (s) tES (s) tD (s)

r0 (mm) ln(c/r0) ln(a/r0) �a 2 b�=�a 1 b� Emulsion model (Palierne)

140 15.8 60.0 67.0 51.5
230 28.2 105 108 84.5
280 31.0 120 125 103

Fig. 8. The three principal stretch ratios of the droplets as functions of the
normalized timet/tES. The shape of the droplets are: (I) ellipsoid; (II) rod-
like; (III) dumbbell; and (IV) ellipsoid of revolution.



where f is the volume fraction of the droplets,f �
4pr3

0nd=3 and nd is the number of the droplets per unit
volume.

The surface area of the droplets per unit volume,SE, is
expressed as

SE � 2ndpr2
0

1
l

1

��
l
p

arcsin
����������
1 2 l23
p����������

1 2 l23
p

" #
: �7�

FromSE, a square root of the normalized excess surface area
is defined as:

Farea�
�����������
SE 2 S0

S0

s
�8�

whereS0 � 4ndpr2
0 is the surface area of the undeformed

droplets. Ratios of the normalized stress,sr �
8r0s

�i�
xy =�3af sin 2u�; to the Hencky strainG � ln�a=r0�;

the extent of deformationD � �a 2 b�=�a 1 b� and Farea

are plotted against the stretch ratiol�� a=r0� in Fig. 9. As
l decreases, all these three ratios increase. This means that,
as the droplet recovers to a sphere (l ! 1), the reduction of
s r is less significant than those ofG , D andFarea. Thus,tD

characterizing the relaxation ofs xy
(i) is somewhat longer than

tESthat represents the decay ofG andD. However, as shown
in Fig. 9, the variations ins r/G , s r/D ands r/Fareaare within
10% over the range ofl from 1.5 to 1, where the shape of
the droplet in our system changes from an ellipsoid of revo-
lution to a sphere. Thisl range corresponds to the range
whereG andD can be expressed by an exponential function
exp�2t=tES� as shown in Fig. 7 and in our previous paper.

The above results mean that the interfacial stresss xy
(i) and

the droplet deformation parametersG andD decay at essen-
tially the same rate in a terminal stage of relaxation after
imposition of a step strain. In the Palierne theory, the term-
inal viscoelastic relaxation rate coincides with the relaxation
rate ofs xy

(i). Thus, the observedtES (specifying the decay of
G andD) are in close agreement with the theoreticaltD, as
demonstrated in Table 1.

Concerning this result, we add a few comments about the
stress components. In the theories by Bachelor [44] and
Onuki [45], the stressagainst step strainincludes an inter-
facial component (s xy

(i)) and the viscous component, the
latter resulting from flow due to motion of the droplet/
matrix interface. (The stress derived from the Palierne
theory also includes the interfacial and viscous components,
although the micro-structural expressions of these compo-
nents are different from those in the theories of Bachelor and
Onuki.) The relative magnitude of these components
changes with the viscosities of the droplet and matrix, the
droplet volume fraction, and the interfacial tension.
However, both components decay on the recovery of the
droplet shape to a sphere and have essentially the same
relaxation time (in the terminal relaxation process). Thus,
the coincidence of the structural relaxation timetES and the
viscoelastic relaxation time seen in Table 1 is also consistent
with the theories of Bachelor and Onuki.

3.5. Evaluation of the surface area

The primary driving force for the shape recovery of the
droplet may be the reduction of the droplet/matrix interfa-
cial area. Therefore, it is interesting to examine the surface
areas of a droplet in various shapes, i.e. the flat ellipsoid
�c� r 0�; the rod-like, the dumbbell, and the ellipsoid of
revolution. The surface areasS and volumesV of the flat
ellipsoid and the ellipsoid of revolution are geometrically
well defined. However, we have to use the geometri-
cally explicit models for evaluatingS for the rod-like
shape and the dumbbell: the rod-like shape is modeled
as a cylinder with two semi-spheres at both ends, and
the dumbbell as a revolution of a cosine curve with two
semi-spheres at both ends [37]. The surface area of
these models can be calculated under the condition of
constant volume.
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Fig. 9. The ratios of the normalized shear stresss r to the Hencky strainG ,
the extent of deformationD, and the normalized increment of the surface
areaFarea for the ellipsoid of revolution plotted against the droplet stretch
ratio l .

Fig. 10. The curve-fitting to the dumbbell profile obtained at 760 s after the
application of the straing � 5:



For the dumbbell,S is given by [37]

S� 4pr2 1 4p
Zl

0
f �x� 1 1

df �x�
dx

� �2
" #1=2

dx; �9�

with

f �x� � r�1 1 d�
2

2
r�1 2 d�

2
cos

x
l
p

� �
�10�

Here,f(x) is a function describing the surface profile at the
middle of the dumbbell.d representsb/r with r being the
radius of the semi spheres, and 2l represents the wavelength
of the cosine curve. Fig. 10 shows the experimental data for
the dumbbell�r0 � 230mm� at 760 s after the application of
g � 5: The solid line in the figure represents the best fit of
the model as given by Eq. (10).

Fig. 11 shows the plots of normalized surface areaS/S0

againsta/r0 for the droplets withr0 � 140; 230 and 280mm
after the application of the straing � 5: HereS0 represents
the surface area of the initial spherical droplet. Three lines
in Fig. 11 representS/S0 of the flat ellipsoid (line A), the
cylinder1 semi spheres (line B), and the ellipsoid of revo-
lution (line C) as functions ofa/r0 under the condition of the
constant volume. The lines for the modeled dumbbell shape
with variousd lie between line B and line C [37].

The observed reduction ofS/S0 due to the droplet shape
recovery can be divided into the following three stages as
shown in Fig. 11. During the early stage, the flat ellipsoid
reduces its surface area remarkably by changing into the
rod-like shape with very small reduction ina/r0. The time
constant for this stage,tFR, depends onr0. During the inter-
mediate stage, the droplet reduces the surface area mainly
by contractinga/r0. The change in the surface area due to the
shape change (rod-like to dumbbell) is small in this stage.
The droplet exhibits the dumbbell shape after it becomes the

rod-like shape due to the capillary instability. In the late
stage from the ellipsoid of revolution to the sphere, the
droplet recovers to the spherical shape with the time
constanttES depending onr0.

4. Conclusions

A PIB droplet embedded in a more viscous matrix of
PDMS becomes a flat ellipsoid just after application of
straing . 4 and changes into a rod-like shape, a dumbbell,
an ellipsoid of revolution, and finally back to the sphere.
During this recovery process, the orientation angle between
major axis and shear direction stays unchanged and is close
to that expected from the affine deformation. Just after
application of the strain, the stretch ratio along the major
axis, a/r0, is independent ofr0 and is about 1.25 times
greater than the value calculated for the affine deformation.
The time constants for the shape change from the flat ellip-
soid to the rod-like and from the ellipsoid of revolution to
the sphere,tFR andtES, can be evaluated from the plots of
log�ln�c=r0�� and log�ln�a=r0�� vs. t, respectively. BothtFR

andtES are found to be proportional tor0. The timetES is
comparable withtD, the viscoelastic relaxation time for the
droplet given by the emulsion model. Plots of the normal-
ized surface area against the stretch ratio of the droplets are
almost independent ofr0 when the same strain is applied. At
the early stage of the shape recovery, the large reduction of
the surface area occurs by changing the shape from the flat
ellipsoid to the rod-like without reducing the droplet stretch
remarkably. At the intermediate stage, the further reduction
occurs slowly by reducing the droplet stretch. The capillary
instability appears at this stage but the reduction of the
surface area due to this instability is small. At the late
stage, the droplet recovers to the spherical shape with the
time constanttES depending onr0.
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